

Explainer

For the period from January 1 to December 31, 2024. Submitted on May 2025.

View the full report at [Drinking Water | Tyler, TX \(CityofTyler.org\)](https://CityofTyler.org) or the QR Code above.

Safe and Clean Water

Tyler Water Utilities delivers safe drinking water that meets or exceeds all Environmental Protection Agency (EPA) and Texas Commission on Environmental Quality (TCEQ) standards. Rigorous processes ensure strict compliance with health and safety guidelines.

Testing and Expertise

- 252,000+ water quality tests conducted in 2024.
- Managed by 20 licensed water experts with a combined 215 years of experience.

Water Sources

- Supplied from Lakes Tyler and Lake Palestine.
- Geosmin is a naturally-occurring compound in Lake Palestine; while it is safe to drink, it can give the water an earthy taste.
- All water undergoes filtration and disinfection for safety before reaching your tap.

Contaminant Levels

- Substances like chlorine, fluoride, and nitrates are tested regularly.
- All levels are well below the maximum limits set by the EPA and TCEQ.

2024 DRINKING WATER QUALITY REPORT

If you would like additional information concerning this report
about the quality of your drinking water, please contact
Tyler Water Utilities at (903) 939-8716

On September 18, 1998, the U.S. Environmental Protection Agency (EPA) adopted a rule requiring all water utilities to provide a detailed annual report informing customers of the quality of their drinking water. Tyler Water Utilities is proud of its history of providing its customers with a safe and reliable supply of drinking water. By EPA requirements, the City of Tyler hereby provides this Annual Water Quality Report, which covers the period from January 1, 2024, to December 31, 2024.

PUBLIC PARTICIPATION OPPORTUNITIES

The public may participate in City Council meetings on water quality matters held every second and fourth Wednesday at 9 a.m.

REQUIRED INFORMATION

Some persons may be more vulnerable than the general population to specific microbial contaminants, such as Cryptosporidium, in drinking water. Cryptosporidium is a tiny intestinal parasite found naturally in the environment. It is spread by human and animal waste. If ingested, Cryptosporidium may cause cryptosporidiosis, an abdominal infection (symptoms include nausea, diarrhea, and abdominal cramps). Some of the ways Cryptosporidium can be spread include drinking contaminated water, eating contaminated food that is raw or undercooked, exposure to the feces of animals or infected individuals (i.e., changing diapers without washing hands afterward), or exposure to contaminated surfaces. Not everyone exposed to the organism becomes ill. However, Infants, some elderly, or immunocompromised persons, such as those undergoing chemotherapy for cancer, those who have undergone organ transplants, those who are undergoing treatment with steroids, and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791. En Espanol: Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en español, favor de llamar al teléfono (903) 531-1230.

The City of Tyler has tested for Cryptosporidium in untreated and treated water. It has only been found in the untreated water supply, not the Tyler-treated drinking water. Tyler works to protect the watershed from contamination and optimizes the treatment process. Although Tyler's water treatment process removes Cryptosporidium, immunocompromised persons should consult their physician regarding appropriate precautions to avoid infection.

SOURCES OF DRINKING WATER

Tyler Water Utilities receives raw surface water from two primary sources. Raw water from Lake Tyler and Lake Tyler East, located approximately eight miles southeast of Tyler, is pumped to the Golden Road Water Treatment Plant. Raw water from Lake Palestine, located approximately ten miles southwest of Tyler, is pumped to the Lake Palestine Water Treatment Plant. At the treatment plants, raw water is treated, filtered, and disinfected before distribution.

ADDITIONAL INFORMATION

To ensure tap water is safe to drink, EPA prescribes regulations that limit the amount of specific contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800)426-4791. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These problems are not necessarily cause for health concerns. For more information on the taste, odor, or color of drinking water, please get in touch with Tyler Water Utilities at (903)939-8716. TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to specific contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants will be found in this water quality report. For more information on source water assessments and protection efforts at our system, call (903)939-8716.

DEFINITIONS

AL (Action Level) - The concentration of a contaminant that triggers treatment or other requirements that a water system must follow if exceeded.

Contaminant - Any physical, chemical, biological, or radiological substance or matter in water. The presence of contaminants does not necessarily indicate that the water poses a health risk.

HRA Avg. (Highest Running Annual Average) - The highest of four (4) values calculated by averaging each quarter's average result with the previous three (3) quarter's average results.

LMPS (Lowest Monthly Percentage of Samples) - The lowest monthly percentage of samples that meets the turbidity limit of <0.3 NTU.

MCL (Maximum Contaminant Level)—The highest level of contaminant allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal) - The contaminant level in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

N/A - Not Applicable

ND – Indicates that the parameter tested below the detection limit.

NTU (Nephelometric Turbidity Unit) - A unit of turbidity determined by measuring the side scattering of light caused by particulate matter.

Parameter - a particular chemical, combination of chemicals, or microbiological entity that can be assigned a value: commonly a concentration, but may also be a logical entity (present or absent)

pCi/l (Picocuries per liter) - A measure of radioactivity.

Ppb (Parts per Billion) - In drinking water, one atom or molecule of a substance in one billion molecules of water. Example: One cent in 10 million dollars equals one ppb.

ppm (Parts per Million) - In drinking water, one atom or molecule of a substance in one million molecules of water. Example: One cent in 10 thousand dollars equals one ppm.

TT (Treatment Technique) - A required process intended to reduce the level of a parameter in drinking water.

umho/cm - A unit of measurement for conductivity.

< (less than sign) - The sign indicating the value was 'less than' or not detected at the detection limit of the analytical method or 'less than' the regulatory limit.

CITY OF TYLER
DRINKING WATER QUALITY MONITORING ANALYSIS
January 1, 2024, to December 31, 2024

Regulated in the Distribution System and the Treatment Plants

Parameters	Units	HRA Average	Range	MCL	MCLG	Source in Drinking Water
Total Trihalomethanes	ppb	60.8	33.1 - 102	80	0	Chlorination byproduct
Total Haloacetic Acids	ppb	34.2	13.4 – 77.2	60	0	Chlorination byproduct

Distribution System Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	A source in Drinking Water
Chloramine	2024	2.00	0.8 – 3.0	4	4	mg/L	N	Water additives are used to control microbes.

Regulated at the Customer's Tap

Parameters	Units	90th Percentile	MCL	MCLG	# of Sites Exceeding AL	Sources in Drinking Water
Copper	ppm	0.0033	AL = 1.3	1.3	0	Corrosion of customer
Lead	ppm	ND	AL = 0.015	0	0	Corrosion of customer

The City of Tyler's last Lead and Copper Rule sampling was in 2023. The 2023 lead and copper sampling results indicated that our water system is below the action limit for lead and copper.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water but cannot control the various materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Regulated at the Treatment Plants

Parameter	Units	Results	MCL	MCLG	Source
Turbidity (TT=Treatment Technique)	NTU	Max 0.27	TT = 1.0 NTU	N/A	Soil runoff
	Percent	LMPS 100%	TT = <0.3 NTU in 99% of samples		

State and federal law require measuring turbidity, which aids the city in determining the effectiveness of the clarification and filtration processes in removing particulate matter from drinking water. The city met all turbidity requirements in 2024.

Parameters	Units	Max	Range	MCL	MCLG	Source
Bromate	ppm	<5.0	<5.0 - <5.0	10	0	By-product of drinking water disinfection
Barium	ppm	0.095	0.047 - 0.095	2	2	Erosion of natural
Fluoride	ppm	0.252	0.047 – 0.252	4	4	Drinking water
Nitrate	ppm	0.16	0.0164 - 0.16	10	10	Fertilizer runoff; Erosion of natural deposits

Total Organic Carbon (TOC) removal percentage was measured monthly, and the system met all TOC removal requirements.

Secondary and Other Constituents Parameters

Parameter	Units	Average	Range	Maximum Secondary
Alkalinity, Total	ppm	36.5	25.2 – 52.3	N/A
Alkalinity, Bicarb.	ppm	32.3	26.1 – 38.4	N/A
Aluminum	ppm	0.044	0.015 – 0.072	N/A
Conductivity	umho/cm	248	244 – 266	0.20
Hardness, Total	ppm	44.2	44.2 – 44.2	N/A
Total Dissolved Solids	ppm	145	138 – 151	N/A
Total Organic Carbon	ppm	3.00	2.20 – 4.17	N/A
Calcium	ppm	13.3	12.7 – 13.8	N/A
Chloride	ppm	16.8	14.8 – 18.7	N/A
Magnesium	ppm	2.56	2.37 – 3.05	N/A
Manganese	ppm	0.003	<0.001 – 0.051	N/A
Sodium	ppm	23.6	22.0 – 25.1	N/A
Copper	ppm	0.0009	<DL - 0.0018	N/A
Iron	ppm	<0.05	<0.05	N/A
Nickel	ppm	<0.001	<0.001	N/A
Zinc	ppm	<0.005	<0.005	N/A
Monochloroacetic acid	ppm	4.09	1.0 – 10.7	N/A
Dichloroacetic acid	ppb	18.4	3.9 – 35.7	N/A
Trichloroacetic acid	ppb	9.99	1.4 – 30.8	N/A
Monobromoacetic acid	ppb	0.17	<1.0 – 3.3	N/A

Dibromoacetic acid	ppb	1.61	<1.0 – 20.7	N/A
Bromochloroacetic acid	ppb	5.46	3.3 – 15	N/A

Parameter	Units	Result	MCL	MCLG
Antimony	Units	<0.001	0.06	6
Arsenic	ppm	<0.001	0.001	6
Beryllium	ppm	<0.001	0.004	N/A
Cadmium	ppm	<0.001	0.005	4
Chromium	ppm	<0.001	0.1	5
Mercury	ppm	<0.0002	0.002	100
Selenium	ppm	<0.005	0.005	2
Silver	ppm	<0.001	0.1	50
Thallium	ppm	<0.001	0.002	N/A

Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead—and copper-containing plumbing materials.

Violation Type	Violation Begin	Violation End	Violation Explanation
LEAD CONSUMER NOTICE (LCR)	12/30/2023	01/29/2024	We failed to provide TCEQ with the results of lead tap water monitoring before the deadline. The results were supposed to be provided no later than 30 days after we learned of them.

Environmental Protection Agency (EPA) UCMR5 Program

In 2023, the City of Tyler collected samples per the EPA's UCMR5 Program requirements. This consisted of samples collected at the Lake Palestine Water Treatment Plant and the Golden Road Water Treatment Plant once a quarter for the year. The samples were then sent to an independent lab for analysis. More can be learned at the City of Tyler's PFAS webpage, [Understanding PFAS \(cityoftyler.org\)](https://cityoftyler.org/understanding-pfas)

Unregulated Parameters

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. Any unregulated contaminants detected are reported in the following table. For additional information and data, visit <https://www.epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule>, or call the Safe Water Hotline at (800-426-4791).

Constituent Parameter	Sampling Type	Units	Average	Range	MCL
PFBA	Entry Point	ppb	0.00659	<0.005 - 0.0142	N/A
PFPeA	Entry Point	ppb	0.00578	<0.003 - 0.02450	N/A
PFHxA	Entry Point	ppb	0.00405	<0.003 - 0.01100	N/A
PFHpA	Entry Point	ppb	0.00309	<0.003 - 0.00374	N/A
PFHxS	Entry Point	ppb	0.00342	<0.003 - 0.00633	0.01
PFOA	Entry Point	ppb	0.00462	<0.004 - 0.00892	0.004
PFOS	Entry Point	ppb	0.00404	<0.004 - 0.00433	0.004
Lithium	Entry Point	ppb	10.37500	<9 - 20	N/A

Environmental Protection Agency (EPA) Lead Service Line Inventory

A nationwide directive by the EPA required all public water systems to inventory customer service lines in 2024 to determine the type of material it was made of. Tyler Water Utilities completed this requirement and is providing the public with an opportunity to view the service line inventory. Please visit [Tyler Water Utilities Service Line Inventory](https://cityoftyler.org/tyler-water-utilities-service-line-inventory) for more information.

Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board for January through December 2024, our system lost an estimated 2,467,601,123 gallons of water. If you have questions about the water loss audit, please call 903-531-1238.